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SUMMARY

A fully implicit, mass-conserving, semi-Lagrangian discretization of the shallow-water equations on a
doubly periodic f -plane is proposed. The scheme requires the solution of a nonlinear and nonlocal system
of equations at each time step. When a Newton method is used to solve this system of equations, a partial
elimination of the unknowns can be carried out to leave a near standard elliptic problem at each Newton
iteration, for which efficient solution methods are well known. Moreover, the nonlinearity is, in fact, rather
weak so that a small number of Newton iterations (1–3) should be sufficient for practical application.

Setting up the Newton method and solving the resulting elliptic problem can be made cheaper by
making certain approximations to the terms in the Jacobian matrix; the price to pay is a slowing of the
Newton convergence rate. Numerical experiments are carried out to quantify the effects on convergence
rate of such approximations to help decide the optimum trade-off between cost per Newton iteration and
iteration count. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper considers how to combine several numerical techniques with the aim of developing
a more accurate and efficient dynamical core for weather and climate prediction models. The
techniques in question are (i) the use of a staggered grid, (ii) the use of implicit time stepping, and
(iii) the use of a mass-conserving semi-Lagrangian advection scheme. Each of these techniques
is considered advantageous. However, combining the three of them poses considerable technical
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challenges, and to date there have been few attempts to do so; one such attempt for the shallow-
water equations is described by Lauritzen et al. [1]. Particular features of the scheme proposed
here are that it avoids the introduction of a reference geopotential in the mass equation and that
it avoids the use of any time-extrapolated terms, instead treating all terms in a Crank–Nicolson
manner; in this sense it is fully implicit.

An implicit time stepping treatment of fast waves requires that, among others, the term involving
the flow divergence in the mass equation must be handled implicitly, i.e. as a time average
involving the unknown velocities at the new time level. When the mass equation is discretized
using a conservative semi-Lagrangian scheme, however, the flow divergence appears only in the
way the trajectories determine Lagrangian departure control volumes; therefore, the trajectories
must be computed implicitly. This then leads to a coupled, nonlinear and nonlocal system of
equations for the mass and velocity fields at the new time level. A Newton method may be used to
solve this system of equations. Moreover, a partial elimination may be performed on the Newton
iteration formulas to leave a near standard Helmholtz equation for the mass increment. A complete
elimination of the velocity increments is not possible without approximation because of the use
of the staggered grid. These issues are discussed in more detail below.

The Newton method requires the elements of a Jacobian matrix to be computed at each iteration,
which is relatively expensive. It might be cost effective to approximate the Jacobian matrix, even if
this leads to more Newton iterations being required. Three groups of approximations are discussed
below, along with the parameter regimes in which they are expected to be valid. The effect on the
Newton convergence rate of each group of approximations is investigated empirically for different
flow regimes.

2. KEY ASPECTS OF THE PROPOSED SCHEME

2.1. The rotating shallow-water equations

The rotating shallow-water equations have many features in common with the full three-dimensional
rotating compressible Euler equations, including fast divergent waves, slow, balanced vortical
motions, and analogous conservation properties. For this reason, they are often used as a testbed
for numerical methods before extending those methods to more complete equation sets (e.g. [2]).
Here, we consider the solution of the f -plane shallow-water equations in doubly periodic Cartesian
geometry, neglecting orography:

D�

Dt
+�∇ ·v=0 (1)

Du

Dt
− f v+�x =0 (2)

Dv

Dt
+ f u+�y =0 (3)

Here, v=(u,v) is the velocity vector, � is the geopotential (proportional to fluid depth), f is
the constant Coriolis parameter, D/Dt is the material derivative, and subscripts x and y indicate
spatial partial derivatives.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1047–1059
DOI: 10.1002/fld



IMPLICIT CONSERVATIVE SEMI-LAGRANGIAN SCHEME 1049

u u

u u u

Φ Φ

Φ Φ

v v

v v

v v

u

Figure 1. Schematic showing the distribution of variables on the staggered C-grid. � is located at cell
centres, and normal velocity components are located at cell edges.

2.2. The C-grid

Although fast waves (acoustic and inertio-gravity waves) are observed to be energetically weak in
the atmosphere on large scales, radiation of these waves is the mechanism through which the large-
scale flow adjusts towards and remains close to hydrostatic and geostrophic balance. It is considered
crucial that the fast waves, and hence the adjustment process, be captured sufficiently accurately.
On smaller horizontal scales, inertio-gravity waves can be significant features of the flow; hence, it
is important to capture them accurately in high-resolution models. For the horizontal discretization,
the staggered C-grid (Figure 1) does significantly better than an unstaggered grid at capturing the
fast waves, provided the grid spacing is smaller than the Rossby radius: �x<�1/2/ f [3].

2.3. Implicit time stepping

The fast waves supported by the governing equations would require a very short time step for
stability if an explicit time stepping scheme were used. Longer time steps are possible with an
implicit time scheme. To avoid the need to solve a coupled nonlinear system of equations for the
unknowns at each time step, it is common to use a semi-implicit time scheme [4], in which the terms
responsible for the fast waves are split into a large part linearized about some reference state and
a small remainder; only the linearized parts are then handled implicitly, leading to a linear system
for the unknowns at each time step. A typical semi-implicit (nonconservative) semi-Lagrangian
time scheme for the shallow-water equations is the following:

�A−�D

�t
+ �0

2
(∇ ·vA+∇ ·vD)+{(�−�0)∇ ·v}∗ =0 (4)

vA−vD

�t
+ f k̂×v∗+ 1

2
(∇�A+∇�D)=0 (5)

where the trajectory departure points are calculated using

xD=xA−v∗�t (6)

Here, superscript A indicates a value at a trajectory arrival point (i.e. on the regular grid) at the new
time level and superscript D indicates a value at a trajectory departure point at the old time level.
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�0 is a constant reference geopotential, and k̂ is the unit vertical vector. Superscript ∗ indicates
values to be estimated at the midpoint, in space and time, of the trajectory. These may, for example,
be evaluated explicitly by a time extrapolation from earlier time levels. Because trajectory departure
points and midpoints do not lie on the regular grid, values there must be evaluated by interpolation
in space [5].

To step forward in time, vA is eliminated to leave a Helmholtz equation for �A:

∇2�A−�2�A=RHS (7)

where �2 is a positive constant and RHS indicates terms that can be calculated straightforwardly
from known quantities.

One drawback of the semi-implicit scheme is that the reference geopotential must be chosen
carefully for stability and accuracy, e.g. [5]. Also, although the divergence term in the mass
equation and the geopotential gradient term in the momentum equation are the most crucial for
a stable treatment of the fast waves, there is some evidence that one could improve stability and
robustness, better capture the balance among the dominant terms in the equations, and improve
the coupling to other processes represented by sub-grid models, by using a more fully implicit
time scheme (e.g. [6]).

2.4. Conservative semi-Lagrangian advection

A semi-Lagrangian treatment of advection (e.g. [5]) is widely used in atmospheric models, because
the stability restriction on the permitted time step is much weaker than with explicit Eulerian
advection schemes. However, the conventional formulation based on pointwise interpolation is
not conservative. Local conservation of mass and of long-lived chemical species is considered
important for climate simulation. This has stimulated the development of several semi-Lagrangian-
like schemes that are conservative while retaining stability for large time steps [7–10].

In this paper we use the SLICE scheme [10, 11] for the advection of the mass field. At
each step, the mass field must be conservatively remapped from the regularly arranged Eulerian
control volumes to the Lagrangian departure control volumes. The two-dimensional remapping is
carried out efficiently by decomposing it into two one-dimensional remappings using the ‘cascade’
method.

The conservative semi-Lagrangian discretization of the mass equation may then be expressed as

(��)A−(��)D=0 (8)

where � refers to the area of the arrival or departure control volume, depending on its superscript.
Note that a correct C-grid implementation of SLICE requires that the Lagrangian departure

control volumes are constructed using cell-edge-centre trajectory departure points rather than cell
corner trajectory departure points.

3. DISCRETIZATION

Motivated by the preceding discussion, the following fully implicit mass-conserving semi-
Lagrangian time discretization is proposed. It is very similar to the shallow-water version of a
scheme currently being developed at the Met Office, except that it avoids the introduction of a
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reference geopotential in the mass equation:

(��)A−(��)D=0 (9)

vA−vD

�t
+ f k̂× 1

2
(vA+vD)+ 1

2
(∇�A+∇�D)=0 (10)

where

xD=xA− �t

2
(vA+vD) (11)

The mass equation is to be solved using the conservative SLICE scheme, and all terms in the
momentum and trajectory equations are to be handled fully implicitly. In particular, in contrast to
semi-implicit schemes, no reference value �0 is needed.

Discretizing in space, (9) and (10) may be expressed as

G≡(G�,Gu,Gv)=0 (12)

where

G� = 1

�A
{(��)A−(��)D} (13)

Gu =
{
u+ �t

2
(− f v+�x�)

}A

−RD
u where Ru =

{
u− �t

2
(− f v+�x�)

}
(14)

Gv =
{
v+ �t

2

(
f u+�y�

)}A

−RD
v where Rv =

{
v− �t

2

(
f u+�y�

)}
(15)

An overline indicates a four-point spatial average to transfer fields between u and v points on the
C-grid, while �x and �y indicate spatial finite difference approximations to �/�x and �/�y.

The departure control volume terms in the mass equation (13) are evaluated using SLICE, as
described above. The departure point terms in the momentum equation (14) and (15) are evaluated
using cubic Lagrange interpolation. The departure point velocity in the trajectory equation (11) is
evaluated using linear interpolation [5].

4. NEWTON METHOD-BASED SOLVER

The discretization presented above constitutes a nonlinear and nonlocal coupled system of equa-
tions for the unknowns s≡(�A,uA,vA). A standard iterative method of solving such systems of
equations is Newton’s method:

sm+1=sm+s′ (16)

where the increment s′ ≡(�′,u′,v′) satisfies

(∇sG)s′ =−Gm (17)

∇sG is the Jacobian matrix and superscript m is the iteration count. However, the linear system (17)
that must be solved at each Newton iteration is very large; hence, it must be solved very efficiently
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for this approach to be feasible. A key result here is that we can make a partial elimination of
u′ and v′ in (17) to leave something resembling a standard Helmholtz problem for �′, for which
efficient solution methods are well known. Some details are described below.

The derivative of Gu (see (14)) with respect to �A will clearly have contributions coming
from the �x� term at the arrival point. The derivative of Gu with respect to uA will have a
contribution coming directly from the arrival-point terms. However, the location of the departure
point also depends on uA through (11); hence, the derivative of Gu with respect to uA will also
have a contribution coming from �xD/�uA times the spatial gradient of Ru at the departure point.
Similarly, the derivative of Gu with respect to vA will include a contribution coming directly from
the arrival-point Coriolis term and a contribution coming from the spatial gradient of Ru at the
departure point. Hence, the components of (17) coming from the equations involving Gu are

�t

2�x
�x�

′+u′
(
1− �RD

u

�xD
�xD

�uA
− �RD

u

�yD
�yD

�uA

)

+v′
(

− f �t

2
− �RD

u

�xD
�xD

�vA
− �RD

u

�yD
�yD

�vA

)
=−Gu (18)

A similar calculation gives the components of (17) coming from the equations involving Gv:

�t

2�y
�y�

′+v′
(
1− �RD

v

�xD
�xD

�vA
− �RD

v

�yD
�yD

�vA

)

+u′
(

f �t

2
− �RD

v

�xD
�xD

�uA
− �RD

v

�yD
�yD

�uA

)
=−Gv (19)

The coefficients �xD/�uA, etc., are obtained by differentiating (11), recalling that vD is a function of
xD given by the linear interpolation. The coefficients �RD

u /�xD, etc., are obtained by differentiating
the cubic Lagrange interpolation formulas for Ru , etc.

We also require the components of (17) coming from equations involving G�. Because SLICE
involves a somewhat complicated geometrical construction of the departure and intermediate control
volumes and because it involves a nonlocal parabolic spline remapping, an exact linearization
would be complicated and nonlocal. However, to a very good approximation, the sensitivity of the
mass in the departure cell to the location of one of the cell edges is given by the mean value of �
on that edge times the length of that edge times a geometrical factor accounting for the direction
of displacement. Thus, these components of (17) may be expressed as

�′− 1

�A

{
�x

[(
�m
�x

�xD

�uA
+ �m

�y
�yD

�uA

)
u′+

(
�m
�x

�xD

�vA
+ �m

�y
�yD

�vA

)
v′

]

+�y

[(
�m
�x

�xD

�uA
+ �m

�y
�yD

�uA

)
u′+

(
�m
�x

�xD

�vA
+ �m

�y
�yD

�vA

)
v′

]}
=−G� (20)

The terms �m/�x and �m/�y are the rate of change of mass (��)D in the departure control volume
when the cell edge in question is displaced in the x or y direction. They can be evaluated by an
extension of the SLICE algorithm, using information that is a by-product of the parabolic spline
remapping.
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Thus, Equations (18)–(20) constitute a linear system for �′, u′, and v′ in which all the coefficients
can be calculated. An efficient way to solve the linear system is to carry out analytically a partial
elimination of the u′ and v′ terms. (Unfortunately, the u′ and v′ terms that arise because of the
C-grid staggering cannot easily be eliminated without making some approximation.) This partial
elimination leads to a Helmholtz problem:

�′+�x (A�x�
′)+�y(D�y�

′)=−R−�x (Bv′)−�y(Cu′) (21)

where

R=G�+�x (AG̃u)+�y(DG̃v) (22)

coupled to update equations for u′ and v′

u′ =−EG̃u−E�x�
′−Fv′ (23)

v′ =−HG̃v −H�y�
′−Gu′ (24)

Here, G̃u and G̃v are rescaled versions of Gu and Gv , and the coefficients A, . . . ,G are easily
determined from those in (18)–(20).

A number of efficient methods are available for the solution of equations like (21). Here, a full
multigrid method is used [12]. At each smoothing iteration, u′ and v′ are updated using (23) and
(24), allowing the right-hand side of (21) to be recomputed. The coefficients B,C,F , and G in
the terms involving u′ and v′ in (21), (23), and (24) are small in practice; hence, this repeated
updating of the right-hand sides does not adversely affect the multigrid convergence.

There is no guarantee of mass conservation under incomplete convergence of the Helmholtz
problem (21)–(24), although in practice the errors have been found to be extremely small. If exact
conservation to machine precision is required, then, after solving (21)–(24), the updated velocity
field may be used in (9) to produce a final updated mass field.

5. SAMPLE RESULTS

The scheme described above has been implemented and tested on a number of test problems. It is
found to have good stability properties, even for large wave and advective Courant numbers.

Figure 2 shows the results of one test case. The domain is 107m×107mwith resolution 128×128
grid cells. The initial wind field consists of alternating jets in the positive and negative x direction,
in geostrophic balance with the � field: f u+�y =0. Such a flow field is a steady solution of the
governing equations, and the numerical solution is also steady. To make the problem nontrivial,
the initial � field is perturbed by adding a large spike at a single grid cell near the centre of the
domain. The perturbation is advected by the jets and disperses by radiating inertio-gravity waves,
which are clearly visible in the v field (Figure 2). Three Newton iterations are used at each step.
The time step is 900s making the wave Courant number about 4.0 and the maximum advective
Courant number about 2.9.

Figure 3 shows another test case, this time with initially balanced jets that meander. These jets
are fluid dynamically unstable and role up into two pairs of coherent vortices. There is strong
straining between the vortices, which generates small-scale filamentary structure in the materially
conserved potential vorticity field q≡( f +vx −uy)/�. Again the resolution is 128×128 and three
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Figure 2. Test case in which initial balanced jets are perturbed by a spike in the � field. Left: u field
after 40 steps; the maximum value is 251ms−1; dashed contours indicate negative values; solid contours

indicate positive values. Right: v field after 40 steps; peak values are of order 1ms−1.

Figure 3. Test case with initial unstable meandering jets. Left: initial potential vorticity field. Right:
potential vorticity field after 100 time steps. Solid contours indicate larger values.

Newton iterations are used. The time step is 1800s making the wave Courant number about 8.0
and the maximum advective Courant number about 3.3.

6. EFFECT OF APPROXIMATING THE JACOBIAN MATRIX

Recalculating the coefficients in (18)–(20) at each Newton iteration adds to the computational
cost of this method. A number of approximations are possible that allow these coefficients to be
calculated more cheaply. However, approximating these coefficients might slow the convergence
of the Newton method. In this section we investigate the effect of various approximations on the
convergence of the Newton iterations; this will help to determine whether such approximations
might be cost effective.
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Figure 4. Newton convergence rates for inertial wave initial data. Solid and dotted curves show the
root-mean-square residuals Gv and Gu , respectively. Top left: without approximation. Top right: with Group
a approximations. Bottom left: with Group b approximation. Bottom right: with Group c approximation.

The possible approximations fall into three groups.
Group a: These approximations will be accurate when velocity gradients times �t are small.

• If |∇v|�t/2�1, then

�xD

�uA
≈ −�t

2
,

�yD

�uA
≈0

�xD

�vA
≈ 0,

�yD

�vA
≈−�t

2

(25)

• If |��t |�1 where �=vx −uy is the relative vorticity then Lagrangian departure control
volumes will not be rotated much relative to Eulerian arrival control volumes; then

�m
�y

≈ 0 at u departure points

�m
�x

≈ 0 at v departure points

(26)
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Figure 5. Newton convergence rates for meandering jet initial data. Solid and dotted curves
show the maximum modulus and root-mean-square residuals G�, respectively. Top left: without
approximation. Top right: with Group a approximations. Bottom left: with Group b approximation.

Bottom right: with Group c approximation.

• If |∇v|�t�1, then,

�Gu

�uA
≈1,

�Gv

�vA
≈1 (27)

• If |∇v|�t�| f |�t (i.e. small Rossby number) then

�Gu

�vA
≈− f �t

2
,

�Gv

�uA
≈ f �t

2
(28)

Group b: This approximation is valid when |(�−�0)/�0|�1 for some constant mean geopo-
tential �0, and velocity gradients times �t are small. Then

�m
�x

≈ �0�y at u departure points

�m
�y

≈ �0�x at v departure points

(29)
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Figure 6. Newton convergence rates for meandering jet initial data. Top: solid and dotted curves show
the maximum modulus and root-mean-square residuals G�, respectively. Bottom: solid and dotted curves
show the root-mean-square residuals Gv and Gu , respectively. Left: without approximation. Right: with

Group a and Group b approximations together.

Note that this approximation re-introduces a reference geopotential in the approximate Newton
method; however, the scheme (9)–(11) is insensitive to the choice of reference geopotential provided
the Newton iterations converge.

Group c: This approximation is valid when |∇v|�t�1 and | f |�t�1. Then

�Gu

�vA
≈0,

�Gv

�uA
≈0 (30)

The effect of different combinations of approximations on the Newton convergence rate has been
tested empirically for several flow regimes. A single time step is carried out, taking 10 Newton
iterations, and the maximum modulus and root-mean-square of the residuals G�, Gu , and Gv

calculated at each iteration.
Figure 4 shows the results of one such test. The initial fields are all constant (�=105m2 s−2, u=

100ms−1, v=0ms−1). The time stepping problem reduces to a linear one and the unapproximated
Newton scheme converges in a single iteration. For this test, velocity gradients are zero and � is
equal to its mean value; hence, Group a and Group b approximations should have no impact. On
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the other hand, | f |�t≈3.5 is quite large so that the Group c approximation is expected to slow
the Newton convergence. This is exactly what is found.

Figure 5 shows the results of a second test case. The flow field consists of balanced meandering
jets, similar to those in Figure 3, but with the three dimensionless parameters |∇v|�t , |�−�0|/�0,
and | f |�t all approximately 0.2. It is unlikely that larger values of these parameters or their
analogues would be met in realistic applications of a weather or climate model, so this is an extreme
test. Each group of approximations is seen to result in some slowing of the Newton convergence
rate. Nevertheless, in all cases the residuals are reduced by several orders of magnitude after only
3 or 4 iterations, implying that making these approximations might be cost effective.

It is particularly interesting to examine the case in which Group a and Group b approximations
are made together, because the Helmholtz problem then reduces to a constant coefficient problem.
Figure 6 shows results for the same test case as in Figure 5, but now comparing the convergence
rate for the unapproximated case with that when Group a and Group b approximations are made
together. The approximations lead to a noticeable slowing of the Newton convergence rate, but it
is still fast enough that 3 or 4 iterations should be sufficient for practical use.

7. CONCLUSIONS

A fully implicit, mass-conserving, semi-Lagrangian scheme for the shallow-water equations on a
doubly periodic f -plane has been proposed. The scheme avoids the introduction of a reference
geopotential and treats all terms, including the trajectory calculation, in a Crank–Nicolson manner.
This then leads to a nonlinear and nonlocal coupled set of equations for the predicted fields at the
new time level. This coupled set can be solved by a Newton method, and because the nonlinearity
is, in fact, rather weak, a small number of iterations (1–3) are sufficient for practical purposes. A
key result is that the Newton iteration formula can be simplified by a partial elimination of the
u and v increments to leave a near standard Helmholtz problem for the � increments, for which
efficient solution methods are well known.

The method has been implemented and tested and is found to work well even for large wave
and advective Courant numbers. In theory the method should work and remain stable provided
|∇v|�t/2 is less than about 1 to ensure that back trajectories do not become tangled.

The impact on the Newton convergence rate of approximating terms in the Jacobian matrix
has been investigated. The Newton convergence rate is noticeably slowed by the approximations
examined, but is still fast enough to be practically useful. Approximations that lead to a constant
coefficient Helmholtz problem are particularly attractive because they may permit very efficient
solution methods.

A three-dimensional spherical version of SLICE has been developed at the Met Office. It appears
possible, therefore, to extend the methodology described here to the compressible Euler equations
in three-dimensional spherical geometry for use in operational weather and climate models.
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